WEST COAST THEORETICAL CHEMISTRY SYMPOSIUM: POSTERS

Stanford University, Sapp Center, 28th March 2018

Organizers: Martin Head-Gordon, Tom Markland, Eran Rabani and Joe Subotnik

- 1. Aaron Virshup, Arzeda Corporation, "Computational chemistry at scale: building modeling pipelines for enzyme design"
- 2. Addison Schile, UC Berkeley, "Understanding Quantum Dynamical Regimes with Stochastic Unraveling of Quantum Master Equations"
- 3. Aleksandr O. Lykhin, University of Nevada, Reno, "Intersystem Crossing in the Tunneling Regime: A Case of Thiophosgene"
- 4. Ali Abou Taka, UC Merced, "An Examination of Factors Affecting the Accuracy of Quantum Chemical Frequency Calculations for First-Row Transition Metal Compounds"
- 5. Amael Obliger, UC Berkeley, "Large intrinsic anion interdiffusion in lead halides perovskites"
- 6. Amikam Levy, UC Berkeley, "Noise resistant quantum control using dynamical invariants"
- 7. Andres Montoya-Castillo, Stanford University, "On the exact continuous mapping of fermions"
- 8. Ardavan Farahvash, UC Davis, "A multifaceted computational analysis of water sparsity in cytochrome coxidase"
- 9. B. Scott Fales, Stanford University, "Large Scale Electron Correlation Calculations: Rank-Reduced Full Configuration"
- 10. Benoit Mignolet, University of Liege, "Probing the high-excited states dynamics in the methyl azide molecule: a joint experimental-theoretical study"
- 11. Boris Fain, InterX Inc., "On the importance of accounting for Nuclear Quantum Effects in Ab Initio Calibrated Force Fields."
- 12. David Sanchez, Stanford University, "Ultrafast Dynamics: A study of photoinduced ring-opening in 1,3-cyclohexadiene and derivatives"
- 13. Deniz Tuna, Stanford University, "Excited States, Photochemical Reaction Paths and Multiple-Spawning Photodynamics of Urocanic Acid and Orange Carotenoid Protein"
- 14. Diptarka Hait, UC Berkeley, "How accurate is density functional theory at predicting dipole moments?"
- 15. Edgar J Landinez, Lawrence Livermore National Laboratory, "Improving the Accuracy of AFQMC with Non-Orthogonal Multi-Determinant Wave Functions"
- 16. Erum Mansoor, UC Berkeley, "Understanding Adsorption and Catalysis in Zeolites using Long-range corrected DFT models"
- 17. Evan Antoniuk, Stanford University, "New Assembly-Free Bulk Layered Heterostructures: Electronic, Mechanical, and Optical Properties"
- 18. Fang Liu, MIT, "Exploiting Graphical Processing Units to Enable Accurate Excited State Potential Energy Surface Calculation for Large Molecules"
- 19. Feng Wu, UC Santa Cruz, "Charged Defects in Two Dimensional Materials from Many Body Perturbation Theory"
- 20. Grace Johnson, Stanford University, "Elucidating excitation energy transport in LHCII using a GPU-accelerated ab initio exciton model"
- 21. Haochuan Wei, UC Berkeley, "Reduced-Scaling Fock-space Variational Monte Carlo"
- 22. Hassan Harb, UC Merced, "Structure and Bonding of Lanthanide Hydroxides Ln-OH(Ln=La-Lu)"
- 23. Hayley Weir, Stanford University, "Nonadiabatic simulation of cis-stilbene with FOMO-CASCI in the 400 femtosecond regime"
- 24. Hyesu Jang, UC Davis, "Quantum chemical studies of redox properties and conformational changes of a four-center iron CO2 reduction electrocatalyst"
- 25. Jacqueline Shea, UC Berkeley, "Enforcing Size-Consistency in an Excited State Variational Principle"
- 26. Jason Ford, Stanford University, "Fragment-Based Multiple Time Step Integration for Ab Initio Molecular Dynamics in Covalently Linked Systems"
- 27. Jerome F. Gonthier, UC Berkeley, "Insight into 2-body and 3-body Dispersion Interactions"
- 28. Jimmy Yu, Stanford University, "Fractional Occupation Molecular Orbital-Complete Active Space Configuration Interaction with Corrections from Density Functional Theory"
- 29. Joe Napoli, Stanford University, "Decoding the spectroscopic features and timescales of aqueous proton defects"
- 30. John J. Karnes, UC Santa Cruz, "Mixing oil and water: The thermodynamics and mechanism of water transferring into oil"

- 31. Julia Rogers, UC Berkeley, "A molecular explanation for how the excited state relaxation dynamics of an artificial photosynthetic system are affected by the chromophore's linker."
- 32. Katherine Oosterbaan, UC Berkeley, "Non-Orthogonal Configuration Interaction Singles for the Calculation of Core-Excited States"
- 33. Keiran Thompson, Stanford University, "A Sparse Adaptive Quantum Propagator"
- 34. Layne Frechette, UC Berkeley, "Exploring the phase behavior of an elastic Ising model for cation exchange"
- 35. Lisa Gong, UC Davis, "Nanoreactor Study of Levulinic Acid Oxidation: Pairing Theory with Experiment"
- 36. Luning Zhao, UC Berkeley, "Variational Principle for Electronic Excitations in Solids"
- 37. Marie Humbert-Droz, Stanford PULSE Institute, "Ab Initio Multiple Spawning Simulation of the Photodynamics and Time-Resolved Photoelectron Spectroscopy (TRPES) of a Photoactive Yellow Protein (PYP) Model Chromophore"
- 38. Marshall Hutchings, UC Davis, "Ab initio bond orders for recording reaction events in reactive ab initio molecular dynamics"
- 39. Monika Williams, Stanford University, "Excited State Intramolecular Proton Transfer of Methyl Salicylate"
- 40. Nanhao Chen, UC Davis, "Molecular dynamics study and kinetic modeling of the fold switching mechanism of a 24hour circadian clock protein"
- 41. Nanna Holmgaard List, Stanford University, "Nonadiabatic electron dynamics with full multiple spawning"
- 42. Peter Walters, UC Berkeley, "Quantum-classical path integral calculations of electron transfer in solution"
- 43. Qian Yang, Stanford University, "Statistical Learning of Reduced Kinetic Monte Carlo Models of Complex Chemistry from Molecular Dynamics Data"
- 44. Robert M. Parrish, Stanford University, "Frameworks for Routine Simulation of Ultrafast Dynamics Experiments"
- 45. Romit Chakraborty, UC Berkeley, "Multi-scale simulations in Chemistry with the Lattice Boltzmann Method"
- 46. Ruben Guerrero, Stanford University, "A heterogeneous approach to the implementation of the J- and K- engines on accelerator cards"
- 47. Ruibin Liang, Stanford University, "Nonadiabatic photodynamics of retinal protonated Schiff base in channelrhodopsin 2"
- 48. Sarah Sandholtz, Stanford University, "Physical Modeling of the Spreading of Epigenetic Modifications through DNA Looping"
- 49. Sofia Izmailov, Stanford University, "Comparing Transition State Theory Rates with Direct Dynamics Simulation"
- 50. Stefan Seritan, Stanford University, "TeraChem in the Cloud: A Framework for Distributed GPU-Accelerated Electronic Structure"
- 51. Stephanie Valleau, Stanford University, "Reaction dynamics of cyanohydrines with hydrogen sulfide in the context of origins of life"
- 52. Stephen J Cotton, UC Berkeley, "Classical Molecular Dynamics Simulation of Electronically Non-Adiabatic Processes via a Symmetrical Quasi-Classical Windowing Model"
- 53. Surl-Hee (Shirley) Ahn, Stanford University, "Investigating the Role of Non-Covalent Interactions in Conformation and Assembly of Triazine-Based Sequence-Defined Polymers"
- 54. Tim J. Zuehlsdorff, UC Merced, "A computationally efficient approach for modeling the absorption lineshape of solvated dyes"
- 55. Tobias Morawietz, Stanford University, "The Interplay of Structure and Dynamics in the Raman Spectrum of Liquid Water over the Full Frequency and Temperature Range"
- 56. Trevor Grand Pre, UC Berkeley, "Current Statistics of Active Brownian Particles"
- 57. Tyler Smart, UC Santa Cruz, "Enhanced Hole Conduction in CuO by Li Doping"
- 58. Tyler Takeshita, UC Berkeley, "Stochastic Formulation of the Resolution of Identity: Application to Second Order Moller-Plesset Perturbation Theory"
- 59. Xiaolei Zhu, Stanford University, "Molten Carbonate Chemistry Revealed by the Ab Initio Nanoreactor"
- 60. Chey M. Jones, Stanford University, "Benchmarking α-CASSCF excited state dynamics simulations for wild-type green fluorescent protein"
- 61. Yudong Qiu, UC Davis, "Polarizable Study for Desalination using Nanoporous Graphene"
- 62. Yuezhi Mao, Stanford University, "Energy Decomposition Analysis in an "Adiabatic" Picture: Theory and Application"

We are incredibly grateful to the sponsors of the West Coast Theory Symposium: Stanford PULSE Institute, The Journal of Chemical Physics, ACS Publications, PetaChem